skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Towell, Brendan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With a sufficiently large list size, the serial list Viterbi algorithm (S-LVA) provides maximum likelihood (ML) decoding of a concatenated convolutional code (CC) and an expurgating linear function (ELF), which is similar in function to a cyclic redundancy check (CRC), but doesn't enforce that the code be cyclic. However, S-LVA with a large list size requires considerable complexity. This paper exploits linearity to reduce decoding complexity for tail-biting CCs (TBCCs) concatenated with ELFs. 
    more » « less
  2. Tal, Ido (Ed.)
    Recently, rate-1/ n zero-terminated (ZT) and tail-biting (TB) convolutional codes (CCs) with cyclic redundancy check (CRC)-aided list decoding have been shown to closely approach the random-coding union (RCU) bound for short blocklengths. This paper designs CRC polynomials for rate-( n - 1)/ n ZT and TB CCs with short blocklengths. This paper considers both standard rate-( n -1)/ n CC polynomials and rate-( n - 1)/ n designs resulting from puncturing a rate-1/2 code. The CRC polynomials are chosen to maximize the minimum distance d min and minimize the number of nearest neighbors A dmin . For the standard rate-( n - 1)/ n codes, utilization of the dual trellis proposed by Yamada et al . lowers the complexity of CRC-aided serial list Viterbi decoding (SLVD). CRC-aided SLVD of the TBCCs closely approaches the RCU bound at a blocklength of 128. This paper compares the FER performance (gap to the RCU bound) and complexity of the CRC-aided standard and punctured ZTCCs and TBCCs. This paper also explores the complexity-performance trade-off for three TBCC decoders: a single-trellis approach, a multi-trellis approach, and a modified single-trellis approach with pre-processing using the wrap around Viterbi algorithm. 
    more » « less